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AbslrscL We have investigated the influence of different types of disorder on the 
electronic density of states in compositionally disordered quantum wires. using the tight- 
binding, coherent-potential approximation (CPA). In order to embe? the correlations that 
are present in any wire structure the single-site CPA condition (ti),.s = ,O, has teen 
generalized to the matrix equation for a slice (L) of the wire as a scatterer = 0. 
Essentially this approximation is similar to the molecular CPA (MCPA) or the cluster CPA 
but due to the geometry of the system translational invariance along the effective wire 
is not broken. Calculations for monolayer wires reveal that the boundary roughness of 
a wire degrades tne ideal quasi-one-dimensional density of states in a characteristic way. 
This degradation is even stronger in the presence of islands. me subband representation 
reveals that the density of states in each channel is affected by the edge disorder in 
proportion to the Fermi energy or channel number. By contrast the effect of the presence 
of islands is independent of the channel number. 

1. Introduction 

Quantum wire structures have density of states features which are very useful for 
laser and other applications and they have been predicted to have extremely high 
electron mobilities [l]. Also, in laser applications, a smaller current threshold density 
and better temperature stability [Z] is possible than in lasers produced from higher 
dimensional structures. An important question is how compositional disorder affects 
the above mentioned attractive features of quantum wires. It has already been re- 
ported that the atomic structure of interfaces between GaAlAs/GaAs epitaxial films 
grown by molecular beam epitaxy controls some of the optical properties of quantum 
wells [3]. Disorder induced during the production of lateral confinement in quantum 
wires (e.g. lithography [4] or wires grown on a vicinal surface [5 ] )  is usually stronger 
than in the epitaxial layer interface. Decreasing the lateral dimensions of the wires 
produces a wider separation of energy subbands but interface fluctuations become 
more important. Also in the ID (or quasi-ID) case there is a much higher probability 
of multiple scattering from the same site compared to the 2D or 3D case. This could 
contradict the expected extremely high mobility in quantum wires (due to suppression 
of both impurity and optical phonon scattering 111). 

The aim of this paper is to examine the possibility of using CPA calculations to 
investigate the equilibrium electronic properties of compositionally disordered quan- 
tum wires. Comparing with some common disordered systems (like random alloys), 
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peculiar to quantum wires are the specific compositional correlations (e.g. transverse 
and longitudinal) that a wire system might have. 

W e  suppose that the wire atoms are located at the sites of a cubic lattice. The 
localized s-state atomic orbital on a site i is denoted li), so the one-electron tight- 
binding Hamiltonian for this system is given by: 
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i '., 
I -#,J 

where is the 'site energy' (it corresponds to the potential energy at site i) and Vij, 
is the hopping matrix element and we shall assume that it is zero unless the i and 3 
sites are the nearest neighbours, when Vij G V = 1 (i.e. V will be a unit of energy). 
The Green function of the system is defined by: 

G ( z )  = (21- H)-'. (2) 

The CPA replaces the real medium with an effective periodic medium [6]. The 
effective medium is determined by the condition that the Green function of the 
effective medium (C,) is equal to the configurationally averaged Green function of 
the real system ((G),nkg). Hence: 

(3) 
1 C, = (21 -He)- = (G)motig 

where He is the effective Hamiltonian given by: 

The effective medium is described by a scalar self-energy U .  The scalar self-energy 
is a useful concept for an uncorrelated disordered system which is homogenous on 
average. But it is obvious that a quantum wire (as in figure '2, below) is not such 
a system, so, in general, we cannot successfully use the single-site CPA. However the 
single-site CPA can be used for some cases, e.g. in calculations which consider only 
the effect of uncorrelated islands in the perfect wire. In this case the self-energy 
d from relation (4) depends on the position of the site across the wire. Therefore 
this self-energy is position dependent (section 3.1). In order to treat fluctuations of 
the width and the centre of the wire (without the correlations from slice to slice) 
we have used the CPA model with the generalized condition (19)-section 3.2. In 
both cases, the effective medium has translational symmetry along the wire, with the 
periodicity equal to the lattice constant a. For such a system we can use a method 
similar to that for semi-infinite leads 1111 in order to obtain the expression for the 
Green function. The CPA approach which includes possible longitudinal correlations 
rather complicates the calculations, but does not give us any new effects. 

Calculations are done with Ga&/A1As systems in mind although this treatment 
is general and can be applied to other material systems. 
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Flgure 1. Plat of the section of quantum wire showing the meaning of the width ( w )  
and the centre ( c )  of the wire. 

Figure 2. Plot of sections of the quantum wires of average width 10 (U )  U: = 1 ,  U: = 0, 
no islands; (b) U; = 3 ,  c: = 7.5, no islands: (c) perfect wire, with addition of islands, 
concentration p=O.OS; (d) m: = 3 ,  U$ = 0, with island concentration p=O.O5. 

2. Definition of the system 

The monolayer quantum wire system we shall consider here is shown in figure 1 (also 
see figure 2 below.). The dark squares (m) correspond to an A-site and light squares 
to a B-site. In order to examine the edge fluctuations and the meandering of the 
wire, the positions of the centre ( c )  and width (U) are identified for each slice along 
the length, L,  of the wire. 

The island structures within the wires are treated independently. We assume a 
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Gaussian distribution for the random variables w and c just in order to quantify 
compositional disorder in these structures. We have chosen this distribution because 
it gives structures similar to those obtained by computer simulation of vicinal surface. 
grown quantum wires [7]. However, we can use any distribution, since the distribution 
does not affect our method of calculations. 

Since we have only discrete values for w and c we use the error function in 
order to define probability distributions and preserve the normalization. Hence the 
probability that the width of the wire is w will be: 
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w - pw +0.5) ( w  - pw - 0.5)] - erf (5a) a 
A similar expression exists for the probability distribution of the centre of the wire c: 

Here p,  and pc are the mean values and e', and U: are the variances of w and c. 
Values of the width and the position of the centre of the wire are usually uncorrelated, 
e.g. for the simulation results in [7] we have obtained I ( (w - pw)(c -  pc)/e,,,uc)l 2 

(( ) means configurational average) which is the same order of magnitude as 
obtained for w and c generated independently. Hence the distributions (Sa) and (56) 
are mutually independent. 

The method that we are going to use in our calculations is equally applicable to 
any cross section of the wire, but monolayer structures are the most convenient for 
efficient calculations. 

3. Method 

We first set up the  method for the calculations of the effect of islands only, neglecting 
the boundary roughness of wires (section 3.1), and then vice versa (section 3.2). Both 
algorithms use the one-dimensional subband representation, but differ in the self- 
energy calculations. For the case of both roughness and islands we have merged 
these two methods (section 4). 

3.1. Posilion dependenr self-energy 

If the wire system can be described by defining the different concentrations of A- 
atoms across the wire (the host consists of B-atoms, see figure 2(c)), then the method 
uses the single-site CPA condition: 

where: 

E i  - e 
1 - ( E :  - u)Ge(i,-i) 

ti = 
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-, m and zB = 0 condition (6) gives the self-energy at the and E:  = E ;  - bg. For 
position m across the wire: 

pA(m) is the concentration of A-atoms along line m in the wire and A4 is the 
number of sites in a cross section of the  wire. Here we have a position dependent 
scalar self-energy D(m), which could be represented as a diagonal matrix in the slice 
representation from section 3.2. 

The 
G,(m, m)'s are the elements on the main diagonal of matrix G,, which corresponds 
to a slice of the effective wire, and by definition is the submatrix on the main diagonal 
of G,. For an infinite strip one has 1111: 

The expression for G,(m,m) can be obtained in the following way. 

G d -  = G(-) d = [El - - 2VtG(m/z)V d I - '  (9) 

Giw/') = [El - HL1) - ),JfG$'"/?)V]-', 

where GLmpo/2) corresponds to a semi-infinite strip and is given by [ll]: 

(10) 

HP) is the Hamiltonian for an isolated effective slice, given by equations (4) and (8), 
and V contains the nearest-neighbour hopping elements between two slices (relation 
(16)). Here superscripts designate the length of the system. For V = I and in the 
basis of the eigenvectors of H?), relations (9) and (IO) reduce to a set of scalar 
equations. Therefore we have for the diagonal elements of the Green function in the 
subband representation: 

m = 1,2,  ..., A4 
1 

/ ( E  - - 4 
g p  = f 

where g?) are the elements of the diagonal matrix U-'GLwm)U (U is the matrix 
of eigenvectors U, of HL1') and e,,, are the eigenvalues of HL'). The sign of the 
square-root is chosen so that Im(ge)) and the density of states have the proper sign 
[10,12]. Finally for G,(m, m) we have: 

A< 

(12) G,(m, m) = Gd(m,m) = x b i ( n 1 ) l  2 9; (m) . 
kl 

The total density of states p( E) is defined as usual, which in our case gives: 

-1 
p ( E )  = xIm[+ItG,(E+iO)]. 

Since we calculate Gd( m, m) we also have the local density of state.! at each site. 
A similar expression to (13) is that for the channel density of states, but with g e )  
given by (11) instead of G,. 
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We shall use this approach in the case of the islands of A-atom in the perfect 
wire of B-atoms. For the higher concentration of island atoms there is a higher pos- 
sibility of forming clusters of island atoms, and our approximation can miss structure 
associated with these clusters [S(b),lO]. So this approach is generally good if we have 
a small concentration of islands in the wire. Nevertheless conditions in our calcu- 
lations (strong scattering regime, i.e. (E* - E ~ ) / ( ~ V )  > 1) will push this part with 
complicated structure towards the higher energies, far from the Fermi energy. 

This model fails to give good results for wires with rough boundaries because it 
cannot define the rough edge of the wire. Therefore, in this case we have used a 
further extension of the CPA, which is detailed in the next section. 

3.2. Selfenergy matrix 
If one takes into account the lateral correlations in a slice of a wire and uses the 
framework of CPA then it is natural to treat a whole slice as a scatterer. A wire can 
be divided into slices (along the wire) such that each slice may be labelled by a single 
integer (L). A useful basis set now is the set of vectors IL), where IL) is a vector 
consisting of M orbitals li) on the Lth slice. The Hamiltonian of our system (1) can 
be rewritten: 

where &L contains matrix elements of the Hamiltonian for an isolated slice (like (l), 
where li) E IL)) and V,, is a matrix of hopping elements between Lth and Rth slice. 
In the nearest-neighbour model V,, is non-zero only if R = Lf 1, and V,,,,, 2 V 
is diagonal (later we shall use V = I). 

Now wc can replace our real wire with the periodic effective wire, formed of the 
same (effective) slices. The Hamiltonian of the effective wire is 

where H, is the Hamiltonian of a uniform system (taken for example to be a lattice 
of B-atoms alone) given by: 

L L 

and C is a matrix self-energy of dimension M x M .  The self-energy is a symmetric, 
complex matrix. The perturbation Hamiltonian in this case is: 

H, = H - He = cIL)(&i - C ) ( L (  
L 

and 

&;.=cL-EO. (18) 

(iL)co"Pg = 0 (19) 

Now we use, instead of the single-site CPA condition (6), the generalized condition 
I8.91: 
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where: 

t;  is a t-matrix for a scatterer at position L in the effective medium. Here G,,, is 
a submatrix of dimension A4 x M of matrix G, (at the position L ,  L). 

Condition (19) means that a slice embedded in the effective medium, on aver- 
age, produces no scattering. This matrix generalization of the single-site CPA retains 
the analytic properties of the CPA, in the same way as the MCPA (which is proved 
by Ducastelle in IS]). Here we do not have problems with the broken translational 
invariance because the effective wire, formed of the effective slices, keeps the transla- 
tional symmetry of the lattice along the wire. At the lateral boundaries of the system 
the wave function is forced to have nodes. Therefore the self-energy operator is still 
block-diagonal (or cluster-diagonal, as in the MCPA), bug here each block has a natural 
meaning-it corresponds to an effective slice of the wire. 

For an infinitely long effective wire, GeLL does not depend on L, so we shall drop 
subscripts L L  in the following text and use G,,, 5 G,. We deal with the infinitely 
long wire system which is equivalent to a configurational average, therefore our results 
will represent most probable values for the calculated features. From equations (19) 
and (ZO), after some rearrangement, we obtain a self-consistent relation for the self- 
ener&y: 

- 

or in the form more appropriate for the long strip geometry: 

C ) ]  - I  
C = l  

where n, is the number of possible configurations of a slice, and p ,  is the probability 
that slice CL appears in the wire. 

The expression for G, has been obtained in section 3.1. Here the Hamiltonian 
for an isolated effective slice is given by: 

Equations (l l) ,  (21) (or (8) for islands) and (22) form a self-consistent set of 
equations. In order to calculate the density of states this system of equations is 
iterated until the self-consistency is achieved. Results of numerical calculations are 
presented in section 4. 

4. Results 

Here we simulate GaAs/AlAs wires, so that we have E~ >> which means in 
our case that host B-atoms are Ga-atoms and A-atom are AI-atoms. For (eAI - 
E ~ , ) / ( ~ V )  > 6 the spectrum of (1) splits into two subbands cenrred about eGa and 

respectively [13]. The states close to the band edge of the Ga-subband are studied 
in our case (so the normalization factor in relation (13) can be (w) instead of M). 
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Because of the high value of the AI site energy, off-diagonal disorder is not relevant. 
We have adopted E ~ .  = 0, while for any value greater than 50 gives virtually 
the same result. We are not dealing with totally realistic GaAslAIAs system, but the 
intention is to treat a system for which the scattering structure is similar to that of a 
realistic system. 

We consider a system of 20 lattice sites width. Assuming that the total amount of 
Ga and Al atoms in the considered system are equal, each wire will be on average of 
width w = 10. Island contributions are represented simply by the random occurrence 
of a single AI-site instead of Ga-site. In the simulations of wires in reference [7], 
for example, results for a wire of width 10 show that most islands are in fact single 
sites. The number of larger islands are satisfactorily reproduced by the probability of 
several neighbouring AI-atoms. 

Here we present results of the numerical calculations for several different types 
and degrees of disorder in quantum wires. A plot showing sections of the considered 
wire systems is given in figure 2. 

As well as the CPA results, figures 3(a),(b),(c) and ( d )  also give the exact density 
of states as a histogram which was obtained using a method 1141 based on the work 
by Dean and Martin [16], and revived by Evangelou [17]. Fluctuations around the 
true value are inevitable in these calculations of ‘exact’ density of states due to the 
finite length of system. 

Figure 3. The density of States calculated using CPA and a histogram of =act DOS 
(calculated for N slices) together with the perfect case (dotled line) corresponding lo 
figures 2(0) N=30000, (b) N=400000, (c) N-lWW,  (d) N=100000. The bottom 
of band is shifted to 0. Curves (U), (b)  and (c) have been shilled vertically. 
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Results from figure 3(a) indicate that the increase of width fluctuations (i.e. rough- 
ness of the boundaries of the wire) shifts the peaks towards higher energies, broadens 
them and decreases their magnitude. No shift of the peaks is observed when there 
are longitudinal correlations in the widths of the slices 1141. For a very high level 
of disorder (see figure 3(b)) the quasi onedimensional characteristics are flattened, 
tending to the spectrum of 2D systems. The effwts of roughness of the boundaries 
of the wire on the one-dimensional (ID) subhand density of states are shown in the 
figures 4(a) and (6). The peak of the density of states in each subband broadens 
and decreases with increase of electron energy, Le. the subband number. A simple 
physical explanation for this starts from the density of states per atom in the perfect 
ID subband. For the tight-binding model and monolayer wire, this is given by: 

1 
P ~ E )  = [B(E - E,, f 2 V )  - @ ( E  - E,, - 2V)J (23) 

T V ~ I  - ( ( E -  En)/2V)’ 

where E,, is the subband edge for the nth ( n  = 1, ..., M )  subband : 

En = 2Vcos(naa/w)  (24) 

and a is the lattice constant. The change in subband density of states caused by small 
width fluctuations (6w) can be roughly estimated from: 

where = (E  - En) /2V is the same in each subband. Hence the edge roughness 
has an influence on the density of states proportional to the subband number n and 
also to pz (therefore peaks are more affected than flat parts). The width of the 
wire w in relation (U) is actually the effective width ‘seen’ by an electron on the 
length equal to the longitudinal wavelength of the electron A. This means that even 
if the width of each slice is equal, if the position of the centre fluctuates (i.e. wire is 
meandering) there are still effective width fluctuations. The effect on the density of 
states is smaller, but still similar to width fluctuations. 

The presence of the islands in the wire structures, figures 3(c) and (d),  substan- 
tially degrades the peaks for even small concentrations of islands. The effect is similar 
in each subband (figure 4(c)). Since relation (8) for the self-energy in this case is not 
dependent on the subband index, this leads to an energy-independent broadening. 
The peak in the first subband is slightly higher and sharper than in the other bands, 
because it has limited space for broadening towards smaller energies, since the CPA 
does not see the tail at the beginning of density of states line. 

Each 1D subband spans the whole accessible energy range, i.e. each starts from 
the band edge (figures S(o),(b),(c)) for both types of disorder. This is due to the 
disorder induced hybridization effect [15] between the corresponding ID subbands of 
the perfect wire. For small edge disorder one can clearly observe that the tails of the 
density of s t a t e  lines roughly follow the perfect ID subbands, but with very reduced 
magnitude (figure 5(a)). As disorder increases the tails rise and flatten (figure 5(6)). 

In the calculations the relations ( 1 1 ) ,  (21) (or (8))  and (22) are solved self- 
consistently until a relative difference of the density of state8 in two iterations became 
less then E (results are virtually the same for any positive E < IOw3). Except for a 
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Figure 4. The density of states calculated using CPA 
(broken line) together wth the perfect case (dolled 
line) and subband density of states for the first 6 

~~ e, o, ,o 11 ,, I o  (or 7) channels (full lines), corresponding IO the 
wires in figure 2 (a), (6) and (c). ENERGY (EN) 

very few values of tbe energy, we have very rapid convergence (2-5 iterations) when 
the final value of self-energy C for a given energy is taken as the initial matrix C for 
the next energy. Critical values of energy occur when a new subband is reached, and 
then about 20-25 iterations are needed in order to obtain the desired precision. 

In the case of a wire with both edge fluctuations and islands we have used 
combined methods from sections 3.1 and 3.2. Calculations are based on the self- 
consistent method as in section 3.2, but in each iteration when we obtain a new value 
for the matrix C (from equation (21)), we rederive diagonal elements C( m ,  m) using 
method 3.1, and then continue with method 3.2. New values for o(m) in method 3.1 
are obtained using condition (6) and relation (7). 

In the first iteration: 
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Figure 5. As in figure 4. bul focused in the region of small density of stales. Figure (c) 
contains m u l u  for island concentrations: p = 0.01, p = 0.05 and p = 0.1. 

The (i + 1)th iteration: 

where p(m) is the concentration of islands at position m across the wire. When 
u(m) is determined with sufficient precision we go back to the matrix E, replacing 
C(m,m) = u(m). Here we use an effective medium, defined by matrix C, as a 
host medium, then add islands and derive a new effective medium correcting the 
self-energy of the sites where islands can be. 

CPA gives good results in comparison with the exact density of states. Exceptions 
are the tails at each subband which CPA cannot provide. This is the standard failing 
of CPA calculations [6,10] since this approximation takes exactly into account multiple 
scatterings only up to the third order. The duration of the calculations is proportional 
to the number of slice configurations taken into account. There are no limitations in 
respect of disorder or strength of scattering. 

5. Conclusions 

Compositional disorder has important implications for the electronic characteristics 
of quantum wires with small lateral dimensions. Using the preferred (subband) basis 
for this problem allow us to see explicitly the influence of disorder on the wire 1D 
subbands. Our results give strong indication that for achievement of good quality bulk 
quantum wire lasers it is necessary to avoid islands of strongly scattering materials 
within the wire and to reduce interface roughness of wires. The CPA calculations 
provide us with density of states characteristics that are useful for the estimations of 
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potential optical properties of quantum wire structures. The efficiency of using CPA 
is only limited by the number of relevant configurations of slices that we have in the 
system. 

If there is correlation from slice to slice of the wire, then this effectively only 
smooths locally the wire and broadens it (for the case when X < l , ,  where X is 
longitudinal wavelength of electron and 1, is the longitudinal correlation length of 
the wire). In this case the density of states diagram will be shifted towards lower 
energies and broadening will decrease in comparison with uncorrelated boundary 
roughness. 
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